Hey, everyone! I’m videogame composer Winifred Phillips, and my work has included the musical scores for top games on all sorts of popular gaming platforms, from handhelds and mobile, all the way up to the latest consoles and PCs. Lately, I’ve been doing a lot of video game music composition for virtual reality. I had the pleasure of presenting a lecture on Music in Virtual Reality (pictured left) at the most recent Game Developers Conference in San Francisco.
By virtue of all the experiences I’ve had recently creating music for VR, I’ve become keenly aware of the importance of sound fidelity in VR. If the experience doesn’t sound real, it loses the chance to actually feel like a fully-convincing, thoroughly awesome virtual reality experience. With that in mind, I’ve been writing periodic articles about new technologies in connection with headphones for VR.
Glad you’re here! I’m videogame composer Winifred Phillips. My work as a game music composer has included music for projects released on nearly all of the gaming platforms, from one of my most recent projects (a Homefront game released on all the latest consoles and PCs) to one of my earliest projects (a God of War game released on PlayStation 2, PlayStation 3, and PlayStation Vita, pictured above). You can read about my work as a video game composer in an interview I gave to Music Connection Magazine for this month’s issue (pictured right).
Lately, I’ve also been creating lots of video game music for awesome virtual reality games developed for the Oculus Rift, Oculus Go, HTC Vive, Samsung Gear VR, PlayStation VR, and lots of other top VR platforms. One of the things I’ve noticed while working in VR is the immense importance of the audio delivery mechanism.
When audio is painstakingly spatialized, it becomes crucial to convey that carefully-crafted spatialization to the player with as little fidelity loss as possible. With the importance of this issue in mind, for the past few years I’ve been periodically writing about headphones in relation to their use in virtual reality.
Delighted you’re here! I’m videogame composer Winifred Phillips, and I’m happy to welcome you back to this four-part article series exploring the role of music in VR games! These articles are based on the presentation I gave at this year’s game Developer’s Conference in San Francisco, entitled Music in Virtual Reality (I’ve included the official description of my talk at this end of this article). If you haven’t read the previous three articles, you’ll find them here:
During my GDC presentation, I focused on three important questions for VR game music composers:
Do we compose our music in 3D or 2D?
Do we structure our music to be Diegetic or Non-Diegetic?
Do we focus our music on enhancing player Comfort or Performance?
In the course of exploring these questions during my GDC presentation, I discussed my work on four of my own VR game projects –the Bebylon: Battle Royale arena combat game from Kite & Lightning, the Dragon Front strategy game from High Voltage Software, the Fail Factory comedy game from Armature Studio, and the Scraper: First Strike shooter/RPG from Labrodex Inc.
So happy you’ve joined us! I’m videogame composer Winifred Phillips. Welcome back to our four part discussion of the role that music plays in Virtual Reality video games! These articles are based on the presentation I gave at this year’s gathering of the famous Game Developer’s Conference in San Francisco. My talk was entitled Music in Virtual Reality (I’ve included the official description of my talk at this end of this article). If you haven’t read the previous two articles, you’ll find them here:
During my GDC presentation, I focused on three important questions for VR video game composers:
Do we compose our music in 3D or 2D?
Do we structure our music to be Diegetic or Non-Diegetic?
Do we focus our music on enhancing player Comfort or Performance?
While attempting to answer these questions during my GDC talk, I discussed my work on four of my own VR game projects – the Bebylon: Battle Royale arena combat game from Kite & Lightning, the Dragon Front strategy game from High Voltage Software, the Fail Factory comedy game from Armature Studio, and the Scraper: First Strike shooter/RPG from Labrodex Inc.
In these articles, I’ve been sharing the discussions and conclusions that formed the basis of my GDC talk, including numerous examples from these four VR game projects. So now let’s look at the second of our three questions:
Welcome! I’m videogame composer Winifred Phillips, and this is the continuation of our four-part discussion of the role that music can play in Virtual Reality video games. These articles are based on the presentation I gave at this year’s Game Developer’s Conference in San Francisco, entitled Music in Virtual Reality (I’ve included the official description of my talk at this end of this article). If you missed the first article exploring the history and significance of positional audio, please go check that article out first.
Are you back? Great! Let’s continue!
During my GDC talk, I addressed three questions which are important to video game music composers working in VR:
Do we compose our music in 3D or 2D?
Do we structure our music to be Diegetic or Non-Diegetic?
Do we focus our music on enhancing player Comfort or Performance?
Hey everybody! I’m video game composer Winifred Phillips. At this year’s Game Developers Conference in San Francisco, I was pleased to give a presentation entitled Music in Virtual Reality (I’ve included the official description of my talk at the end of this article). While I’ve enjoyed discussing the role of music in virtual reality in previous articles that I’ve posted here, the talk I gave at GDC gave me the opportunity to pull a lot of those ideas together and present a more concentrated exploration of the practice of music composition for VR games. It occurred to me that such a focused discussion might be interesting to share in this forum as well. So, with that in mind, I’m excited to begin a four-part article series based on my GDC 2018 presentation!
Ready or not, virtual reality is coming! Three virtual reality headsets are on their way to market and expected to hit retail in either late 2015 or sometime in 2016. These virtual reality systems are:
VR is expected to make a big splash in the gaming industry, with many studios already well underway with development of games that support the new VR experience. Clearly, VR will have a profound impact on the visual side of game development, and certainly sound design and voice performances will be impacted by the demands of such an immersive experience… but what about music? How does music fit into VR?
At GDC 2015, a presentation entitled “Environmental Audio and Processing for VR” laid out the technology of audio design and implementation for Sony’s Project Morpheus system. While the talk concentrated mainly on sound design concerns, speaker Nicholas Ward-Foxton (audio programmer for Sony Computer Entertainment) touched upon voice-over and music issues as well. Let’s explore his excellent discussion of audio implementation for a virtual space, and ponder how music fits into this brave new virtual world.
Nicholas Ward-Foxton, during his GDC 2015 talk.
But first, let’s get a brief overview on audio in VR:
3D Positional Audio
All three VR systems feature some sort of positional audio, meant to achieve a full 3D Audio Effect. With the application of the principles of 3D Audio, sounds will always seem to be originating from the virtual world in a realistic way, according to the location of the sound-creating object, the force/loudness of the sound being emitted, the acoustic character of the space in which the sound is occurring, and the influences of obstructing, reflecting and absorbing objects in the surrounding environment. The goal is to create a soundscape that seems perfectly fused with the visual reality presented to the player. Everything the player hears seems to issue from the virtual world with acoustic qualities that consistently confirm an atmosphere of perfect realism.
To get a greater appreciation of the power of 3D audio, let’s listen to the famous “Virtual Barber Shop” audio illusion, created by QSound Labs to demonstrate the power of Binaural audio.
Head Tracking and Head-Related Transfer Function
According to Nicholas Ward-Foxton’s GDC talk, to make the three-dimensional audio more powerful in a virtual space, the VR systems need to keep track of the player’s head movements and adjust the audio positioning accordingly. With this kind of head tracking, sounds swing around the player when turning or looking about. This effect helps to offset an issue of concern in regards to the differences in head size and ear placement between individuals. In short, people have differently sized noggins, and their perception of audio (including the 3D positioning of sounds) will differ as a result. This dependance on the unique anatomical details of the individual listener is known as Head-Related Transfer Function. There’s an excellent article explaining Head-Related Transfer Function on the “How Stuff Works” site.
Head-Related Transfer Function can complicate things when trying to create a convincing three-dimensional soundscape. When listening to identical binaural audio content, one person may not interpret aural signals the same way another would, and might estimate that sounds are positioned differently. Fortunately, head tracking comes to the rescue here. As Ward-Foxton explained during his talk, when we move our heads about and then listen to the way that the sounds shift in relation to our movements, our brains are able to adjust to any differences in the way that sounds are reaching us, and our estimation of the spatial origination of individual sounds becomes much more reliable. So the personal agency of the gaming experience is a critical element in completing the immersive aural world.
Music, Narration, and the Voice of God
Now, here’s where we start talking about problems relating directly to music in a VR game. Nicholas Ward-Foxton’s talk touched briefly on the issues facing music in VR by exploring the two classifications that music may fall into. When we’re playing a typical video game, we usually encounter both diegetic and non-diegetic audio content. Diegetic audio consists of sound elements that are happening in the fictional world of the game, such as environment sounds, sound effects, and music being emitted by in-game sources such as radios, public address systems, NPC musicians, etc. On the other hand, non-diegetic audio consists of sound elements that we understand to be outside the world of the story and its characters, such as a voice-over narration, or the game’s musical score. We know that the game characters can’t hear these things, but it doesn’t bother us that we can hear them. That’s just a part of the narrative.
VR changes all that. When we hear a disembodied, floating voice from within a virtual environment, we sometimes feel, according to Ward-Foxton, as though we are hearing the voice of God. Likewise, when we hear music in a VR game, we may sometimes perceive it as though it were God’s underscore. I wrote about the problems of music breaking immersion as it related to mixing game music in surround sound in Chapter 13 of my book, A Composer’s Guide to Game Music, but the problem becomes even more pronounced in VR.When an entire game is urging us to suspend our disbelief fully and become completely immersed, the sudden intrusion of the voice of the Almighty supported by the beautiful strains of the holy symphony orchestra has the potential to be pretty disruptive.
The harpist of the Almighty, hovering somewhere in the VR world…
So, what can we do about it? For non-diegetic narration, Ward-Foxton suggested that the voice would have to be contextualized within the in-game narrative in order for the “voice of God” effect to be averted. In other words, the narration needs to come from some explainable in-game source, such as a radio, a telephone, or some other logical sound conveyance that exists in the virtual world. That solution, however, doesn’t work for music, so it’s time to start thinking outside the box.
Voice in our heads
During the Q&A portion of Ward-Foxton’s talk, an audience member asked a very interesting question. When the player is assuming the role of a specific character in the game, and that character speaks, how can the audio system make the resulting spoken voice sound the way it would to the ears of the speaker? After all, whenever any of us speak aloud, we don’t hear our voices the way others do. Instead, we hear our own voice through the resonant medium of our bodies, rising from our larynx and reverberating throughout our own unique formant, or acoustical vocal tract. That’s why most of us perceive our voices as being deeper and richer than they sound when we hear them in a recording.
Ward-Foxton suggested that processing and pitch alteration might create the effect of a lower, deeper voice, helping to make the sound seem more internal and resonant (the way it would sound to the actual speaker). However, he also mentioned another approach to this issue earlier in his talk, and I think this particular approach might be an interesting solution for the “music of God” problem as well.
Proximity Effect
“I wanted to talk about proximity,” said Ward-Foxton, “because it’s a really powerful effect in VR, especially audio-wise.” Referencing the Virtual Barber Shop audio demo from QSound Labs, Ward-Foxton talked about the power of sounds that seem to be happening “right in your personal space.” In order to give sounds that intensely intimate feeling when they become very close, Ward-Foxton’s team would apply dynamic compression and bass boost to the sounds, in order to simulate the Proximity Effect.
The Proximity Effect is a phenomenon related to the physical construction of microphones, making them prone to add extra bass and richness when the source of the recording draws very close to the recording apparatus. This concept is demonstrated and explained in much more depth in this video produced by Dr. Alexander J. Turner for the blog Nerds Central:
So, if simulating the Proximity Effect can make a voice sound like it’s coming from within, as Ward-Foxton suggests, can applying some of the principles of the Proximity Effect make the music sound like it’s coming from within, too?
Music in our heads
This was the thought that crossed my mind during this part of Ward-Foxton’s talk on “Environmental Audio and Processing for VR.” In traditional music recording, instruments are assigned a position on the stereo spectrum, and the breadth from left to right can feel quite wide. Meanwhile, the instruments (especially in orchestral recordings) are often recorded in an acoustic space that would be described as “live,” or reverberant to some degree. This natural reverberance is widely regarded as desirable for an acoustic or orchestral recording, since it creates a sensation of natural space and allows the sounds of the instruments to blend with the assistance of the sonic reflections from the recording environment. However, it also creates a sensation of distance between the listener and the musicians. The music doesn’t seem to be invading our personal space. It’s set back from us, and the musicians are also spread out around us in a large arc shape.
So, in VR, these musicians would be invisibly hovering in the distance, their sounds emitting from defined positions in the stereo spectrum. Moreover the invisible musicians would fly around as we turn our heads, maintaining their position in relation to our ears, even as the sound design elements of the in-game environment remain consistently true to their places of origin in the VR world. Essentially, we’re listening to the Almighty’s holy symphony orchestra. So, how can we fix this?
One possible approach might be to record our music with a much more intimate feel. Instead of choosing reverberant spaces, we might record in perfectly neutral spaces and then add very subtle amounts of room reflection to assist in a proper blend without disrupting the sensation of intimacy. Likewise, we might somewhat limit the stereo positioning of our instruments, moving them a bit more towards the center. Finally, a bit of prudently applied compression and EQ might add the extra warmth and intimacy needed in order to make the music feel close and personal. Now, the music isn’t “out there” in the game world. Now, the music is in our heads.
Music in VR
It will be interesting to see the audio experimentation that is surely to take place in the first wave of VR games. So far, we’ve only been privy to tech demos showing the power of the VR systems, but the music in these tech demos has given us a brief peek at what music in VR might be like in the future. So far, it’s been fairly sparse and subtle… possibly a response to the “music of the Almighty” problem. It is interesting to see how this music interacts with the gameplay experience. Ward-Foxton mentioned two particular tech demos during his talk. Here’s the first, called “Street Luge.”
The simple music of this demo, while quite sparse, does include some deep, bassy tones and some dry, close-recorded percussion. Also, the stereo breadth appears to be a bit narrow as well, but this may not have been intentional.
The second tech demo mentioned during Ward-Foxton’s talk was “The Deep.”
The music of this tech demo is limited to a few atmospheric synth tones and a couple of jump-scare stingers, underscored by a deep low pulse. Again, the music doesn’t seem to have a particularly wide stereo spectrum, but this may not have been a deliberate choice.
I hope you enjoyed this exploration of some of the concepts included in Nicholas Ward-Foxton’s talk at GDC 2015, along with my own speculation about possible approaches to problems related to non-diegetic music in virtual reality. Please let me know what you think in the comments!